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   The Preisach-Stoner-Wohlfarth vector hysteresis model is endowed with many desirable properties, but its application is restricted 

due to its slow computation. Furthermore, the identification of this model involves artwork rather than systematic treatment. This 

paper proposes a fast and efficient approximation to Stoner-Wohlfarth hysteron, which prevents the direct evaluation of nonlinear 

equations and the expensive evaluation of the Preisach diagram. The identification problem is formulated as a classical nonnegative 

least square regression. This leads to a robust identification. 
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I. INTRODUCTION 

HENOMENOLOGICAL MODELLING of vector hysteresis has 

long been centered on the Preisach model and the Stoner-

Wohlfarth (SW) model. The former is supported by its 

simulation accuracy owing to its sophisticated identification 

and implementation, the latter has some features of physical 

realities and used extensively in the area of magnetic 

recording. As a result, there is a tendency toward combing 

these models, which results in the Preisach-Stoner-Wohlfarth 

(PSW) model. In this type of models, single-domain, uniaxial 

magnetic entities are described by the independently SW 

model. The interactions between them are accounted for 

through the employment of the Preisach diagram. This 

modification eliminates the intrinsic flaws of the SW model, 

for instance, the failure in predicting non-symmetrical minor 

loops, while all the important merits, such as rotational loss 

properties, are naturally kept. However, this generalization is 

computationally heavy. The behavior of each hysteron 

strongly depends on its coercive and interaction fields, as well 

as the orientation of its easy axis. To predict the state of a SW 

hysteron, the solutions of quartic equations, associated with 

shifted asteroid with different sizes, are required. Furthermore, 

the distribution function of the PSW model is generally 

unknown. The identification from limited experimental data is 

conducted in an ad hoc manner. 

    To circumvent the aforementioned limitations of the PSW 

model, in this paper, a simplified SW hysteron is employed to 

accelerate the computation and a constrained linear 

programming is proposed to address the identification of the 

PSW model. 

II. MODEL DESCRIPTION 

A. Simplified Stoner-Wohlfarth hysteron 

The free energy of a SW hysteron subject to an magnetic 

field H is  
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where Ms is the saturation magnetization of the SW hysteron. 

Hsw is the switching field depending on the anisotropy of the 

material. Hper and Hpar are the field components perpendicular 

and parallel to the easy axis.  The angle between the particle 

axis and the magnetic moment of the SW hysteron is θ. The 

magnetization process of the SW hysteron is governed by the 

stability properties of (1). By imposing the following 

condition 
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the bifurcation set of the SW hysteron is determined. The 

curve represented by (2) when θ varies in [-π,π] is known as 

the astroid, as shown in Fig. 1.  

 
Fig. 1. The astroid curve (solid line) and square curve (dashed dot-line) and 

some solution of simplified SW hysteron. 

The solving of (2.a) is iterative. This drawback slows down 

the evaluation of PSW model. Based on [1], an expedient 

modification of the SW equations is proposed. The angular 

dependence of this simplified model is fairly agreed with the 

SW model. The magnetization of the simplified SW hysteron 

is demonstrated in the following way: let the orientation of the 

easy axis be on the Hper-Hpar plane, which is denoted as e. The 

dashed lines in Fig. 1 divide the Hper-Hpar plane into the left, 

center and right regions, respectively. For the left- and right- 

regions, the orientation of the magnetization m is determined 

by 
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where k is the unit vector normal to the Hper-Hpar plane. + (−) 

is used for the right- (left-) regions, respectively. For the 

center- region, the result is 

( ) / ( )  sw swH Hm H e H e                                       (4) 

Where the sign is the same as H∙e when the tip of H is outside 

the square, otherwise it is the same as m∙e when the tip of H is 

inside the square, which is the origin of the hysteresis of the 

PSW model. Here the original bifurcation set is replace by the 

square in the proposed PSW model. This simplification not 

only provides similar behavior of the SW hysteron but also 

simplify the description of the Preisach diagram as is detailed 

in the full paper. 

B. Model implementation 

Let us consider a general SW hysteron which has its own 

easy axis and switching field Hsw. To introduce the interaction 

due to its neighboring hysteron, Hpar in (1) is replaced by Hpar 

– Hi, i.e., the orientation of Hi is parallel to the easy axis. 

Given n different easy axes θei, i = 1, …, nd, used in the 

model, nd Preisach diagram are defined, as shown in Fig. 2, 

for every easy axis. Each Preisach diagram depicts the 

distribution of Hsw and Hi of SW hysterons. As a consequence, 

the component of the total magnetization due to all the SW 

hysterons that have easy axis θei is given as 
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and the total magnetization is obtained: 
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where wi represents the distribution density of the easy axes. 

In the engineering viewpoint, only one easy axis is sufficient 

to model anisotropic material, while uniform distribution is 

usually assumed for isotropic material.  

C. Model identification 

The identification problem of the PSW model, at this stage, 

is posed as the finding of the density function ρ(Hi, Hsw). To 

achieve this goal, the domain of the Preisach diagram is 

discretized [2], as shown in Fig. 2, where Hs is the saturation 

magnetic field intensity. The classical triangulation is applied 

to the domain. The largest triangle size is determined by the 

incremental change of the applied magnetic field intensity. It 

is noted that only half of the domain in Fig. 2 is required to 

describe the Preisach diagram since the domain is symmetric 

with respect to the Hsw-axis. Besides the reduction of 

computational burden, this method removes the numerical 

discrepancies that breaks the intrinsic symmetry of the density 

function ρ(Hi, Hsw). 

Let the density function ρ(Hi, Hsw)  on each cell of the 

partitioned domain be uniform, then the identification problem 

becomes finding the vector R = (ρk)mt1, where mt is the 

number of cells. If there are a series experimental data (Hxtj, 

Hytj) and (Mxtj, Mytj), j = 1,…, nt. The substitution of R and 

these experimental data into (5) and (6) gives a linear system 
 M SS R                                                                          (7) 

where M = [Mx,My]
T
, and Mx = (Mxtj)nt1, My = (Mytj)nt1; and 

 
Fig. 2. Partitioned domain of the Preisach diagram  
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For anisotropic material, (wi)1nd = [1,O1(nd-1)]
T
; for isotropic 

material , (wi)1nd = [1/nd, …, 1/nd]
T
. In addition, (7) is 

constrained by 
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The solving of (7) and (8) is equivalent to a quadratic 

programing problem with a convex feasible set. There is a 

standard solver for this type of problem [3], which could 

approach a reasonable approximation at a reasonable number 

of iterations. 

III. RESULTS 

A major hysteresis loop is used to identify the scalar 

Preisach model and the PSW model, respectively. As a 

validated scalar hysteresis model, the Preisach model is used 

to verify the effectiveness of the proposed simplified PSW and 

its parameter identification. As shown in Fig. 3, they are 

matched fairly well. As for more results, especially those 

associated with vector hysteresis properties, they will be 

detailed in the full paper. 

 
Fig. 3. The comparison between Preisach model and the proposed PSW 

model. 
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